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ABSOLUTE HARDNESS AND AROMATICITY: MNDO STUDY OF 
BENZENOID HYDROCARBONS 

ZHONGXIANG ZHOU* AND HIMANSHOO V. NAVANGULT 
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, U.S. A.  

Absolute hardness calculated by the MNDO method has been shown to be a good measure of aromaticity for 14 
benzenoid hydrocarbons. Comparisons among hardnesses at different levels of approximation are given. The 
parallelism of the aromaticity and hardness concepts in benzenoids i s  elaborated. 

INTRODUCTION 

The characterization and quantification of aromaticity 
have long been goals of both physical and organic 
chemists. The aromaticity of a molecule can be con- 
sidered as the complex of properties associated with the 
cyclic conjugation in the molecule. Among many facets 
of aromaticity, high stability, low reactivity and sus- 
tained induced ring current are the most important 
characteristics for aromatic compounds. Therefore, it 
has been possible to quantify aromaticity by empha- 
sizing one or the other of these three aspects’. lo (note 
that the definition of resonance energy in this paper has 
a different sign convention from the original definition 
of Dewar and de Llano’). There exist unified theories 
which characterize more than one aspect of 
aromaticity. 
have shown that absolute hardness and relative hard- 
ness can also well serve as measures of aromaticity 
because they also unify, at least in principle, the three 
main aspects of aromaticity mentioned above. 

In this paper we calculate absolute hardness at the 
MNDO level ( ~ M N D O )  for some selected benzenoid 
hydrocarbons and use it as a measure of aromaticity in 
comparison with hardnesses calculated using two other 
levels of approximation: HMO hardness ( ~ H M O )  and 
experimental hardness ( 7 ~ ~ ~ ) .  We then discuss the cor- 
relation of hardnesses with other criteria of aromati- 
city, such as Dewar’s resonance energy per a-electron 
(REPE) [REPE(D)] , * Hess and Schaad’s REPE 
[REPE(HS)] and Aihara’s4 and Gutman ct a/.’s5 
REPE (or topological REPE: TREPE). Finally, we 

l4 Recently, Zhou and co-workers 

attempt to  establish hardness as a measure of aromati- 
city that unifies the three main aspects of aromaticity 
concept. 

CALCULATION OF ABSOLUTE HARDNESS AT 
THE MNDO LEVEL 

Absolute hardness, TJ, is defined asI5 

TJ=-l (5%) 
2 a N 2  u 

where E is the electronic energy, N is the number of 
electrons and u is the external potential. The corres- 
ponding finite difference equation is 

TJ = ( I -  A)/2 (2) 
where I is the ionization potential and A the electron 
affinity. If molecular orbital theory is used,I6 the 
absolute hardness can be defined as 

17 = (ZLUMO - E H O M 0 ) / 2  (3) 
where c, are the orbital energies. We shall use equation 
(3) as our operational equation. 

The standard AMPAC package” was used to  calcu- 
late TJ and the geometric optimization procedure (with 
restriction of planarity) was employed for all the mol- 
ecules considered here. The initial geometries were set 
up assuming all rings to be hexagons and all angles to 
be 120°, and with the following fi?ed values of bond 
lengths: a!l C-C bonds, r = 1.39 A ;  all C-H bonds, 
r = 1.08 A .  The output PLUM0 and &HOMO gives VMNDO 
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Table 1. Hardnesses and REPEs for selected benzenoid hydrocarbons 

No. Compound VHMO a VMNDO VExp T R E P E ~  REPE(HS)e REPE(D)‘ 

I Benzene 
2 Naphthalene 
3 Anthracene 
4 Naphthacene 
5 Pentacene 
6 Hexacene 
7 Biphenyl 
8 Phenanthrene 
9 Pyrene 

10 Benzo [c] phenanthrene 
1 1 Benz [a]  anthracene 
12 Chrysene 
13 Triphenylene 
14 Perylene 

1.000 
0.618 
0.414 
0.295 
0.220 
0.169 
0.705 
0.605 
0.445 
0.568 
0.452 
0.520 
0.684 
0.347 

4.879 
4.121 
3.603 
3.268 
3.034 
2.869 
4.143 
3.999 
3.568 
3.812 
3.641 
3.771 
3.974 
3.348 

3.985 
3.430 
2.900 

3.805 
3 -570  
3.825 
3.415 
3.795 
3.955 

0.046 
0.039 
0.034 
0.031 
0.029 
0.027 
0.042 
0.039 
0.037 
0.038 
0.036 
0.038 
0.041 
0.037 

0.065 
0.055 
0.047 
0.042 
0.038 

0.060 
0.055 
0.051 
0.053 
0.050 
0.053 
0.056 
0.048 

0.145 
0.132 
0.114 
0.101 
0,091 

0.142 
0.138 
0.114 
0.138 
0.127 
0.138 
0.147 
0.131 

a In - p .  Values are from Ref. 10. 
In eV. Values are calculated by using equation (3) 
In eV. Values are from Ref. 18. 
In p. Values are from Ref. 19. 

‘ In  p. Values are from Ref. 20. 
‘ In  -eV.  Values are from Ref. 2. 

via equation (3). Calculated ~ M N D O  results and ~ H M O ,  

q t X p  and REPEs are reported in Table 1 .  

HARDNESSES AS A MEASURE OF 
AROMATICITY 

Hardnesses at different levels of approximation are 
given in Table 1. Previously ~ H M O  and q~~~ were shown 

to correlate well with both TREPE and REPE(HS). l4 
Figure 1 demonstrates that hardnesses at different levels 
of approximation are linearly correlated. The results 
shown in Figure 2 demonstrate that ~ M N D O  serves well 
as a measure of aromaticity. The correlation between 
~ M N D O  and TREPE or  REPE(HS) is linear. It is clear 
from Figure 2 that the harder the cyclic conjugated 
molecule, the more aromatic it is. The correlation of 
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Figure 1. Correlation of VMNDO (in eV) with V H M O  (in - p )  and V E ~ ~  (in eV). ( 0 )  HMO hardness; ( ) experimental hardness. The 
straight lines are the corresponding linear least-square fits. For compound numbers, see Table 1 
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Figure 2. Correlation of ~ M N D O  (in eV) with REPE (in P ) .  ( 0 )  TREPE; ( ) indicate REPE(HS). The straight lines are the 
corresponding linear least-square fits. For compound numbers, see Table 1 

a 
5 

3, 
3 

L, 
1 

0 : ? 

2 

0 
2 

I .  2 

1 ~ ;; ~ 1 . 3  

___t 
0. 08 0. 10 0.17 0. 14 0. 16 

REPE (0) 

Figure 3 .  Correlation of Dewar REPE (in --eV) with TJHMO (in - P ) ,  T J F ~ ~  (in eV) and TJMNI)O (in eV). ( 0 )  HMO hardness; ( ) 
experimental hardness; ( A  ) MNDO hardness. For compound numbers, see Table 1 
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REPE(D) with hardness is not always as good as 
TREPE or REPE(HS). However, for some particular 
types of molecules, it can be very good. Figure 3 shows 
the correlation of REPE(D) with ~ H M O ,  ~ M N D O  and 
for acenes. Again, in all cases harder implies more aro- 
matic. This agrees with the known fact that acenes show 
decreasing stability as the number of rings increases. 
Hence the MNDO calculations here are in complete 
agreement with the previous results. l 4  

About 25 years ago Clar2’ noted that highly colored 
benzenoid hydrocarbons are generally less stable. Hess 
and Schaad” even plotted their REPE vs the p band of 
benzenoid hydrocarbons and found a very good linear 
correlation. The p band is due to  an electron transition 
from the HOMO level to  the LUMO level. The tran- 
sition energy (AE, )  of the p band is related but not 
equivalent to  twice the hardness because of the 
electron-electron repulsion. As an approximation, if 
we neglect electron-electron repulsion or assume that it 
remains the same for different numbers of electrons, we 
find that hardness is 0-SAE,.  Hence the linear correla- 
tion of REPE(HS) with AE,  shown by Hess and 
Schaad 2o really reveals the correlation of REPE(HS) 
with hardness. 

It should be noted that equation (3) assumes the vali- 
dity of Koopman’s theorem for both ionization poten- 
tial and electron affinity. I6 This introduces some errors 
because of the neglect of the rearrangement of the elec- 
tron distribution. However, these errors partiany cancel 
each other when equation (3) is used to  calculate hard- 
ness. It seems that the differences among hardnesses are 
mainly due to the different treatment of the electron- 
electron interactions in different calculation schemes. It 
is interesting that the linear least-square fit of ~ H M O  to  
either ~ M N D O  or T ) E ~ ,  gives p, the resonance integral, 
with a value of about - 2.5 eV. This value is compar- 
able to  those obtained by other methodsz2 (note that the 
0 value from the 9 value fitting should be the average 
of 0 values from the ionization potential fitting and the 
electron affinity fitting). 

HARDNESS AS A UNIFYING MEASURE OF 
AROMATICITY 

Zhou and ParrI4 have recently argued that relative 
hardness is a parallel concept to  aromaticity because it 
measures in principle the three main aspects of aromati- 
city. Here we elaborate the conclusion that hardness 
measures the sustained induced ring current effect of 
an aromatic compound. For simplicity we consider 
the effects of sustained induced ring current on 
the diamagnetic susceptibility x of a species. The 
z-component of the diamagnetic susceptibility x for a 
molecule can generally be written as23 

where N is Avogadro’s number, m, is the z-component 
of the angular momentum, 1 n > are eigenstates of the 
molecule and En are the corresponding energies, where 
the subscript 0 corresponds to  the ground state. The 
first summation in equation (4) is over the electrons and 
the second is over all excited eigenstates. The effects of 
the induced ring current on xr of an aromatic com- 
pound are contained in the second term of equation (4). 
This can be seen from the following argument. 24 For a 
free atom, the second term in equation (4) equals zero, 
which represents a maximum induced circulation cur- 
rent. In a molecule the existence of the other atoms will 
resist this induced circulation current. The second term 
of  equation (4) represents this resistance. Other things 
being equal, this resistance is inversely proportional to 
the induced ring current in a cyclic conjugated mol- 
ecule. Therefore, this resistance is smaller for an aro- 
matic molecule than for its acyclic analog, and larger 
for an antiaromatic molecule than for its acyclic 
analog. This is in accordance with the hardness index of  
aromaticity. Applying the Unsold approximation2’ to 
the second term of equation (4) we arrive at a common 
denominator of energy gap A which is roughly pro- 
portional to  hardness. The harder the compound is, the 
smaller the second term of equation (4) will be. This 
implies that for a cyclic conjugated molecule harder 
means more aromatic. 
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